Mining Outliers in Spatial Networks
نویسندگان
چکیده
Outlier analysis is an important task in data mining and has attracted much attention in both research and applications. Previous work on outlier detection involves different types of databases such as spatial databases, time series databases, biomedical databases, etc. However, few of the existing studies have considered spatial networks where points reside on every edge. In this paper, we study the interesting problem of distance-based outliers in spatial networks. We propose an efficient mining method which partitions each edge of a spatial network into a set of length d segments, then quickly identifies the outliers in the remaining edges after pruning those unnecessary edges which cannot contain outliers. We also present algorithms that can be applied when the spatial network is updating points or the input parameters of outlier measures are changed. The experimental results verify the scalability and efficiency of our proposed methods.
منابع مشابه
Efficiently Mining Regional Outliers in Spatial Data
With the increasing availability of spatial data in many applications, spatial clustering and outlier detection has received a lot of attention in the database and data mining community. As a very prominent method, the spatial scan statistic finds a region that deviates (most) significantly from the entire dataset. In this paper, we introduce the novel problem of mining regional outliers in spa...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملRisk Assessment and Spatial Modeling of Heavy Metals Contamination in Topsoil around Venarj Manganese Mine by Artificial Neural Networks Method
Background and Objectives: The aim of the present study was to assess the probable heavy metals contamination in topsoil surrounding Venarj mine in Qom province using contamination indices and artificial neural networks method. Material and methods: in order to evaluate the contamination status around Venarj mine in Qom province, 70 soil samples were collected in an area of 22 Km2, and the to...
متن کاملEfficient Voronoi K-Means Algorithm for Mining Local Crime Spatial Outliers in Spatial Crime Data
Through the boosting accessibility of spatial and temporal data in many research fields, spatial clustering and spatial outlier detection has received a group of concentration in the spatial data mining research. As a very famous method, the CLIQUE Optimization finds a region that deviates significantly from the entire spatial data set. In this paper, we introduce the novel problem of mining cr...
متن کاملOn Detecting Spatial Outliers
The ever-increasing volume of spatial data has greatly challenged our ability to extract useful but implicit knowledge from them. As an important branch of spatial data mining, spatial outlier detection aims to discover the objects whose non-spatial attribute values are significantly different from the values of their spatial neighbors. These objects, called spatial outliers, may reveal importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006